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A B S T R A C T

This research presents a statistical approach for hail risk modeling that incorporates the uncer-
tainties of hail model prediction to provide insight into assessing the roof damage of a residential
house in hail events. By quantifying the inherent uncertainties in evaluating hailstorm character-
istics, this study extends the current existing hail models. The hail data are sourced from the Com-
munity Collaborative Rain, Hail and Snow Network (CoCoRaHS) in the U.S. In the modeling
process, the largest hail diameter reported in the CoCoRaHS database serves as a primary input
variable to estimate the number of observations for the largest hail diameter, hailstorm duration,
and hit rate. The assessment of hail risk in this study focuses on the probability of hail damage
and resultant repair costs for five types of roofs in North America (unrated roof and impact-
resistant roofs with UL 2218 rating classes 1 to 4). The probability of hail damage is calculated as
the failure probability by integrating all individual hailstone hits having variable diameters dur-
ing a hailstorm with fragility curves, which estimate the probability that hailstones will fracture
asphalt shingles (allowing water infiltration) or that they dislodge enough granules to cause visi-
ble damage requiring replacement for aesthetic reasons. The results reveal that an impact-
resistant roof (impact-resistant rating classes 1 to 4) is associated with lower hail risks, with 60 %
to 98 % reduction on average compared to unrated roofs. This study provides a comprehensive
uncertainty modeling approach for hail hazard and risk, enabling better-informed decision-
making and risk management strategies.

1. Introduction
Hailstones are pieces of ice that fall from convective hailstorms. Hail forms when vapor or rain rises into freezing air, carried by a

strong updraft typically seen in summer [1]. Hailstones increase in size as they encounter liquid water droplets that freeze upon con-
tacting the surface of the hailstone. The intensity of the updraft influences the length of time the hail stays in the freezing air. Longer
time leads to larger hailstones, though as the hailstone falls through the warm air mass closer to the ground, melting reduces its size.
The hailstone falls when the thunderstorm's updraft is no longer able to uphold the weight of the hailstone. Hailstones vary in size,
ranging from a defined minimum size of 5 mm diameter (below which frozen hydrometeors are called graupel [2]) to over 200 mm
[3]. For the purposes of this study, hailstones are defined as ice descending from thunderstorms with 5 mm or larger diameters.

Hailstorms cause significant impact on a global scale. They damage buildings, vehicles, crops, and injure livestock and people.
Hailstorms can be so costly that they affect regional economies [4–9]. In 2013, Germany experienced a € 3.6 billion loss due to hail
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[10]. In North America, a US$ 2.3 billion loss in Denver, Colorado, U.S., in 2017 [11], and over CAD$ 1.2 billion in losses caused by
hail in Calgary, Alberta, Canada, in 2020 [12]. In light of losses like these, meteorologists and engineers have sought to better under-
stand hailstorms, to develop warning systems, to develop hail-resistant building materials, and to improve methods to test and
demonstrate the efficacy of those materials.

Understanding past hailstorms can help us estimate what will happen in the future. Existing methodologies for assessing hail haz-
ard encompass several approaches including kinetic energy [13–16], radar reflection from the air [16–19], satellite detection
[20,21], and the largest hail diameter on the ground-level from hailpads [22,23]. Each approach has advantages and disadvantages.
Kinetic energy calculations provide insights into the damage potential, considering mass and velocity, but the kinetic energy of a par-
ticle is only partly indicative of its damage potential, for several reasons. Hailstones have irregular shapes with protrusions that can
concentrate pressure. Some of a hailstone's kinetic energy gets absorbed by fracturing the hailstone. The duration of impact affects the
peak force that the hailstone imparts on a shingle. Radar reflection and satellite detection enable large-scale, real-time or near-real-
time monitoring, though they only provide indirect size estimates that can be influenced by environmental factors and are limited by
calibration and resolution. Estimating hail risk through diameter offers direct, relatable measures but faces challenges in accurate
sampling and variability in hailstone shapes. The hailpad approach provides tangible evidence of hailstone size on ground, capturing
the imprints of hailstones to measure their size distribution directly. The challenge of hailpads lies in the effort of securing locations
and traveling across large areas to manage them.

To model hail risk, hail size distribution and fragility to properties are crucial elements. Various relationships for the hailstone size
distribution have been developed by Ref. [22] using data from the Community Collaborative Rain, Hail, and Snow Network (CoCo-
RaHS; https://www.cocorahs.org/) in the U.S. CoCoRaHS is a network that provides the average and largest hail diameters, duration,
and number of hailstones for fitting the hailstone size relationship (distribution), duration relationship, and hit rate relationship [22].
In Ref. [24], the largest hail diameter was used as the key input to the relationships of the size distribution, hit rate, and duration from
Ref. [22], and fragility curves for five types of roofs (unrated roof and impact-resistant roofs with rating classes 1 to 4) were devel-
oped to relate the maximum diameter to the probability of hail damage at the scale of individual shingles and of the entire roof [22].
offered probabilistic relationships between maximum diameter, hit rate, and duration, but [24] only propagated some of the hail-
stone size and count uncertainties through the loss model.

This study uses CoCoRaHS data to develop a statistical model that derives the predictive equations of the largest hail diameter, du-
ration, and hit rate of a hailstorm and estimate the risk in terms of the probability of hail damage on residential house roofs by consid-
ering the uncertainty. This study utilizes the methodology of [22] as a foundation for calibrating hail relationships, specifically char-
acterizing the distribution of the largest hail diameter given a hailstorm (via an exponential function), the duration of hailstorms (us-
ing a power function), and the hit rate (using a power function) as functions of the largest hail diameter. This study evaluates the po-
tential hail damage in terms of the probability of hail roof damage applying the fragility curve model presented by Ref. [24]. The nov-
elty of this research consists of: (i) new data filtration process to explore more CoCoRaHS data, (ii) more comprehensive uncertainty
statistical relationship for hail hazards, and (iii) evaluating the probability of hail damage on roofs utilizing the hail model that propa-
gates more uncertainties.

2. CoCoRaHS data and hail relationships
The hail observation data used in this study are from CoCoRaHS in the U.S. CoCoRaHS is a volunteered network that uses hailpads

to collect the hail information. It features a hailpad, a 12-inch square (0.0929 m2) surface used for recording dents left by hailstones.
Volunteers need to fill in a hail report (Fig. 1) to record the data derived from the hailpad. Key variables derived from the hailpad in-
clude the largest hail diameter, which refers to the size of the biggest hailstone recorded, and the average hail diameter, which calcu-
lates the mean size of all collected hailstones. Additionally, the total number of hailstones and the duration of the hail event are
recorded. These variables are crucial for various components of a hail hazard model (Fig. 2).

The CoCoRaHS network started its operation in 1998 and has gathered 46,138 observations by February 2023 (Fig. 3a). This rep-
resents an increase of over 8000 hail cases from the counts reported by Ref. [22], prior to data screening. This study implements the
data screening procedure as adopted by Ref. [22] by: (1) excluding cases that have missing values among the five relevant columns,
(2) excluding cases with an uncertainty duration over 3 minutes, (3) excluding observations with duration over 40 min, and (4) ex-
cluding cases with fewer than five hailstones on a hailpad. The reason behind each data screening criterion can be found in Ref. [22].
The present study adopted two new filters: (1) equal-diameter cases, which requires that the largest diameter equals or exceeds the
average diameter, and (2) the average diameter must equal or exceed the smallest during a hailstorm. This is different from Ref. [22],
who required that the largest diameter be strictly greater than the average diameter and that the average needs to be strictly greater
than the smallest diameter. To replicate the findings of [22] and to investigate the extended dataset, this study first reproduced their
result using data (1413 observations) by their screening rules (for a comparison purpose, see Appendix Figure A1 and Table A1), and
then encompasses the complete dataset (3413 observations) for the main result. The success in replicating prior research findings con-
firmed that this approach was implemented correctly, and an expansion of the dataset enhances the statistical power and realistic fea-
ture of the hailstorm, providing a more robust basis for drawing conclusions and making decisions.

After data screening, the dataset contains 3413 cases (more than doubled the previous cleaned data size of 1413). Fig. 3b illus-
trates the 3413 hail events, representing 7.4 % of the original data retained for analysis. It is posited that the average diameter, dura-
tion, and hit rate correlate with the diameter of the largest hailstone. The average diameter is instrumental in estimating the Gamma
parameter for the hailstone size distribution within a hailstorm. The total count of hailstones in a single event divided by the duration
gives the hit rate. By simulating the number and distribution of hailstones in an event based on the largest diameter, it is possible to
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Fig. 1. CoCoRaHS hail report sheet. The hailstone size is a categorical variable in this sheet. The hailstone size bin width is different depending on thresholds, 1/8
inches between 0 and 1 inch, 1/4 inches between 1 and 2 inches, and 1/2 inches between 2 and 3 inches. Detailed hailpad information can be found in https://
www.cocorahs.org/Content.aspx?page=HailPadDropOff.

Fig. 2. CoCoRaHS variables associated with a hail hazard model. The distribution of the largest hail diameter is fitted using the observed largest hail diameters. The
distribution of hailstones in a hailstorm is fitted by both largest hail and average hail diameters. The duration statistical relationship is fitted by the largest hail diame-
ter and duration. The hit rate statistical relationship is fitted by the largest hail diameter, duration, and number of hailstones.

assess the probability of each hailstone causing roof damage using fragility curves by Ref. [24] (details will be mentioned in Section
3).

The following four subsections present the details of characterizing (1) the diameter of the largest hailstone Dl, (2) the relationship
between Dl and diameter of the average hailstone, (3) the relationship between Dl and hailstorm duration, and (4) the relationship be-
tween Dl and hit rate.

2.1. Diameter of the largest hailstone
The largest hailstone diameter pertains to the greatest hail dent diameter observed on a single hailpad. The majority of hailpads

captured hailstones with diameters smaller than 1 inch (Fig. 4a), with only two largest instances of hailstones measuring 2.75 inches
documented from 2005 to 2010 (Fig. 4b). The maximum diameter of the largest hailstones generally coincided with years that exhib-
ited a higher frequency of observations. Between 1998 and 2023, the central region experienced a significant increase in both the
number of hail events and the maximum diameters recorded by hailpads. However, the potential impacts of climate change over
years are not factored into this study.

Hailstones often deviate from a perfect spherical shape and can generally be grouped into three categories: conical, spheroidal,
and irregular [25–27]. To be consistent with the relationship by Ref. [22] for the number of observations, a perfect spherical shape of
a hailstone is required, and the diameter needs to be converted from the original gathered diameter data, which is in inches, to mil-
limeters (1 inch = 25.4 mm). To convert the irregular shape of a hailstone to a perfect spherical ice ball, the ice's mass (m) is first esti-
mated by its maximum diameter (Dmax in cm) using the following equation [28]
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Fig. 3. Maps of hail cases. The original dataset contains total of 46,138 cases of hail observations whose information is collected by CoCoRaHS from May 1998 to Febru-
ary 2023. After data screening, 3413 cases were retained for analysis. The dot positions indicate the locations of the hailpads. The color of the dot represents how large
the largest diameter is collected on the hailpad. The largest hail diameter is 2.75 inches in the data for analysis.
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where De is the equivalent diameter of a perfect sphere. By solving the following equation

𝜌V = m, (3)

where ρ is the density of hail, which is set to 0.91 g/cm3 in this study [22], De (in cm) is calculated as
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Finally, the calculated value of De is converted to mm and denoted by Dl. In the reporting format used by CoCoRaHS, the largest
hailstone diameters are classified into categories, such as rice-sized (0.125 inches), grape-sized (0.625 inches), tennis ball-sized (2.5
inches), among others. Each category is associated with a specific numerical value in inches that quantifies the size of the hailstone
(Fig. 1). The dataset includes thirteen distinct values that serve to quantify the size of the hailstone diameters. Table 1 shows the thir-
teen unique values of the largest hail diameter in different units and their transformed diameters for a perfect sphere.

The Dl range is from 6.1 to 52.6 mm. The data points in Fig. 4c show the empirical relationship between Dl and the corresponding
number of observational records. To capture the essence of this relationship, an exponential function (representing as a natural-log
form in Equation (5)) is employed to model the observed decrease in the number of hail observations.

log (nObs (x)) = mDLx + bDL + 𝜖Dl, (5)
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Fig. 4. Largest hail diameter plots. (a) Histogram of largest hail diameter. (b) 3D scatter plot of the number of observations of the largest hailstone diameter over years.
(c) Number of observations on each Dl. (d) Dl relationship comparison plot. G&H represents the function fitted in previous study [22].

Table 1
Unique largest hail dimeters in different units and shapes.

Category of the largest hail
diameter

Original largest hail diameter
(inch)

Original largest hail diameter
(mm)

Perfect sphere hail diameter Dl
(mm)

1 0.250 6.4 6.1
2 0.375 9.5 8.8
3 0.500 12.7 11.4
4 0.625 15.9 13.9
5 0.750 19.1 16.4
6 0.875 22.2 18.8
7 1.000 25.4 21.2
8 1.250 31.8 25.9
9 1.500 38.1 30.6
10 1.750 44.5 35.1
11 2.000 50.8 39.5
12 2.500 63.5 48.3
13 2.750 69.9 52.6

where mDL = − 0.1273, with 95 % confidence interval ( − 0.1485, − 0.106), bDL = 7.4, with 95 % confidence interval (6.781,
8.019), and an error term ϵDl ∼ Normal (0, 0.21) with p-value of 0.927 in Kolmogorov-Smirnov test (note: Normal(μ,σ2) represents
the normal distribution with mean μ and variance σ2). Fig. 4d shows that the Dl distribution has an exponential decreasing trend simi-
lar to Ref. [22]. The black and blue lines represent the statistical relationship fitted by Ref. [22] and this study, respectively. This sta-
tistical relationship reflects how the frequency of hail observations changes as Dl grows, which is consistent with meteorological ob-
servations and theoretical expectations [22,29,30]. Fig. 5 shows the uncertainty in the Dl sample size statistical relationship. The dark
grey area in Fig. 5 represents the 95 % confidence interval around the best-fit line, suggesting the range in which the true mean num-
ber of observations is expected to fall. The light grey area in Fig. 5 corresponds to the 95 % prediction interval, providing an estimate
of where the future data points are likely to lie. The presence of uncertainty in the number of observations for Dl is a critical factor that
should be considered in the Dl distribution. Details about the uncertainty analysis on the distribution of Dl will be mentioned in Sec-
tion 3.
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Fig. 5. Log-based Dl sample size statistical relationship. The plot displays the number of observations under each Dl as the blue data points and a best fitted line as an
exponential function (Equation (5)). The dark grey area represents the 95 % confidence interval for the true mean number of observations for the largest hail diameter.
The light grey area represents the 95 % prediction interval.

2.2. Relationship between Dl and Da

The diameter of hailstones aloft during a hailstorm follows an exponential distribution [31], while the diameter of hailstones on
ground follows a Gamma distribution [31–34]. In the on-ground hailstone simulation process of this study, Dl is first simulated. Then,
given Dl, the hailstone diameter (D) in a hypothetical hailstorm is simulated in the range from 5 mm to Dl. The traditional Gamma dis-
tribution spans from 0 to infinity, which may generate D that is greater than Dl, conflicting with the first condition of the simulation
process. Therefore, a renormalized Gamma distribution is applied here to represent the probability distribution of hailstone diameters
that fall between 5 mm and Dl. The cumulative distribution function of the hailstone diameter (FD(d)) is given by

FD (d) =

d

∫
5

𝛽𝛼x
𝛼−1 exp(−𝛽x)

Γ(𝛼)
dx

Dl

∫
5

𝛽𝛼x𝛼−1 exp(−𝛽x)

Γ(𝛼)
dx

. (6)

The parameters α (shape parameter) and β (inverse scale parameter) in the Gamma distribution have a relationship with the mean
of hail diameter distribution (μd)

𝛽 =

𝛼

𝜇d

. (7)

This study assumes that the mean of the Gamma distribution can be substituted by the average hail diameter of a perfect sphere
denoted by Da. To estimate the parameters of the Gamma distribution, an approximate value of α is taken from Ref. [32], in which the
Gamma distribution was used to characterize the size distribution of hail data in Alberta. Then, β can be calculated by Equation (7). A
key limitation of this approach is the arbitrary selection of α values, as there is no established reference to guide these choices for hail-
pad. Ref. [32] has provided guidance on selecting the shape factor for real hailstone on ground. The longer the time after the hail-
stones have hit the ground, the smaller the shape factor becomes due to ground-level melting [32]. Note that the situations in this
study and [32] are different. The hailpad dents in this study are minimally affected by ground-level melting, which contrasts with the
factors considered in Ref. [32]. To consider the uncertainty associated with α, three values of α = 1.5, 1.75, and 2.0 are used in the
later section of the paper. FD(d), adjusting the area under the probability density function between 5 mm and Dl to one, is used in Sec-
tion 3 for Monte Carlo simulations. Da can be estimated by a power function of Dl (see Fig. 6) [22]

log10


Da


= log10


aDa


+ bDa

log10


Dl


+ 𝜖Da, (8)

where aDa = 1.122, with 95 % confidence interval (0.815, 1.543), bDa = 0.7511, with 95 % confidence interval (0.6487, 0.8535), and
an error term ϵDa ∼ Normal (0, 0.018). In this study. Fig. 6d shows that the Da relationship is similar to Ref. [22]. The black and blue
lines represent the statistical relationship fitted by Ref. [22] and this study, respectively.
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Fig. 6. Average hail diameter plots. (a) Histogram of average hail diameter. (b) The scatter plot of Da under each unique Dl, with color indicating the number of observa-
tions. (c) Averaged Da plot with variation bar. The wider bar indicates that the variance is large due to a smaller number of observations and a high degree of variation
in individual values. (d) Da statistical relationship comparison plot.

Fig. 7 highlights significant uncertainty in predicting the average hail diameter based on the largest hailstones, as evidenced by
the wide prediction interval. As Dl increases, the interval range expands, which corresponds to wider variation bars in Fig. 6c. The
variability in predicting the average hail diameter poses a challenge for accurate forecasting FD

(
d ), which influences the simula-

tion for the number of hailstones in risk assessments.

Fig. 7. Plot of Da statistical relationship with uncertainty. The Da data points are shown in color (most points concentrate near the center), with the best fitted line de-
picted in black (Equation (8)). The dark grey area represents the 95 % confidence interval for the mean prediction of Da given Dl. The light grey represents the 95 %
prediction interval for the Da prediction given Dl. The observed data align well within the prediction interval, indicating a consistent statistical relationship fit.
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2.3. Relationship between Dl and hailstorm duration
Fig. 8a and b shows the histogram of duration, and the number of observations of duration on each Dl. The average duration is

plotted in Fig. 8c. The duration variance increases as Dl increases, because there are more hail cases under small Dl than large Dl.
The hailstorm duration, denoted by T (in minutes), is assumed to have a relationship with Dl in a power function [22]

log10 T = log10aT + b
T
log10Dl + 𝜖T , (9)

where aT = 4.6316, with 95 % confidence interval (3.493, 6.142), bT = 0.3167, with 95 % confidence interval (0.226, 0.4074) in this
study, and an error term ϵT ∼ Normal (0, 0.0014). Fig. 8d shows that the duration statistical relationship is similar to the previous
study by Ref. [22]. The black and blue lines represent the statistical relationship fitted by Ref. [22] and this study, respectively.

In Fig. 9, the data points alongside the large prediction interval indicates considerable variability and uncertainty in hailstorm du-
ration and their correlation to hailstone size. This uncertainty in duration significantly affects subsequent predictions of hit rates and
the number of hailstones per hailstorm event, as described by Equation (10). Therefore, quantifying the uncertainty is crucial, which
will be shown in later sections.

2.4. Relationship between Dl and hit rate
Fig. 10a and b shows the histogram of hit rate and the number of observations of hit rate on each Dl. The average hit rate is plotted

in Fig. 10c. The hit rate (Hr in m−2s−1) is calculated as

Hr =

Nstone

T × 60 × 0.0929
, (10)

where Nstone is the number of hailstones on hailpad (the hailpad area equals 0.0929 m2) and T is the hailstorm duration in minutes. As
suggested by Ref. [22], Hr can be estimated by Dl as a power function

log10Hr = log10aHr + bHr log10Dl + 𝜖Hr, (11)

Fig. 8. Duration plots. (a) Histogram of duration. (b) The scatter plot of duration under each unique Dl, with color indicating the number of observations. (c) Averaged
duration plot with variation bar. (d) Duration statistical relationship comparison plot.
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Fig. 9. Plot of duration statistical relationship with uncertainty. The duration data points are shown in blue, with the best fitted line depicted in black (Equation
(9)). The dark grey area represents the 95 % confidence interval for the mean prediction of the duration given Dl. The light grey represents the 95 % prediction in-
terval for the duration prediction given Dl.

Fig. 10. Hit rate plots. (a) Histogram of hit rate. (b) The scatter plot of hit rate under each unique Dl, with color indicating the number of observations. (c) Average hit
rate plot with variation bar. (d) Hit rate statistical relationship comparison plot.

where aHr = 294, with 95 % confidence interval (108, 802), bHr = − 1.345 with 95 % confidence interval ( − 1.668, − 1.022), and
an error term ϵHr ∼ Normal (0, 0.0181). Fig. 10d shows that the hit rate statistical relationship is similar to Ref. [22]. The black and
blue lines represent the statistical relationship fitted by Ref. [22] and this study, respectively.

Fig. 11 shows a decreasing trend of the hit rate of hailstones with increasing hail diameter, accompanied by a notable degree of
uncertainty as depicted by the spread of data points and the substantial width of the prediction interval. This uncertainty underscores
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Fig. 11. Plot of hit rate statistical relationship with uncertainty. The hit rate data points are shown in blue, with the best fitted line depicted in black (Equation (11)).
The dark grey area represents the 95 % confidence interval for the mean prediction of the hit rate given Dl. The light grey represents the 95 % prediction interval for the
hit rate prediction given Dl.

the challenges of predicting hailstone impact frequencies. Accounting for this variability is crucial in creating an accurate model for
hailstorm characterization and risk assessment.

3. Methodology for hail roof damage calculation and uncertainty analysis
The method for estimating the probability of hail damage on roofs during a hailstorm utilizes the approach outlined by Ref. [24].

This method calculates the probability of roof failure due to each hailstone impact during a hailstorm. Uncertainty in this calculation
is addressed in model prediction uncertainty, which pertains to the variability of the parameters (coefficients and normal error term).
The subsequent two subsections elaborate the specifics of uncertainty analysis and the hail risk assessment.

3.1. Uncertainty analysis on model prediction
In Section 2, hail statistical relationships are developed to characterize the distribution of the largest hail diameter Dl, Da, the dura-

tion of hailstorms, and the hit rate of hailstones. These statistical relationships are shown in Figs. 5, 7, 9 and 11, where broad predic-
tion intervals indicate substantial uncertainty in the variable prediction of the hail statistical relationships. The width of these inter-
vals suggests that while the statistical relationship can capture general trends, there is a significant range within which the actual val-
ues could fall, reflecting the nature of hail phenomena and the inherent challenges in precisely predicting such variable environmen-
tal conditions. The notable uncertainty in the hail hazard model highlights the need to refine the model by considering the range of
the prediction interval. By employing Monte Carlo simulations, statistical relationships are fitted accounting the uncertainty to cap-
ture a range of possible outcomes. For example, a value of Dl is first simulated from the probability distribution estimated in Equation
(5). Then, log(Da) is estimated by summing the average log(Da) estimated by the given Dl (Equation (8)) and a random scaling factor
(following Normal(0,1)) times its standard deviation, which can be obtained from the Da statistical relationship. The same calculation
applies to the duration and hit rate. The simulated values are shown in Fig. 12. This process will update the estimations of hail charac-
teristics and yield revised calculations of the roof damage. Through this iterative process, the model captures a realistic range with
uncertainty.

3.2. Method of calculating hail roof damage
A fragility function quantifies the relationship between the probability of an undesirable event and an environmental force. This

study calculates the probability of exceedance for a specific limit state of a roof shingle caused by hailstones, such as tears, fractures,
cracks, splits, ruptures, and any other signs of openings through the cross section of the roof, based on the diameter of the hailstones
causing the impact [24]. applied fragility methods [35] to construct parametric probability distributions as fragility functions for dif-
ferent roof types, including a baseline non-impact-resistant roof and four graded impact-resistant options. The non-impact-resistant
roof serves as a baseline for comparison. Impact-resistant roofs are classified in an increasing order, with Class 1 roofs withstanding
single impact of a 1.25-inch ice sphere, Class 2 roofs withstanding single impact of a 1.5-inch ice sphere, Class 3 roofs withstanding
single impact of a 1.75-inch ice sphere, and Class 4 roofs withstanding single impact of a 2.0-inch ice sphere. These classifications are
based on the absence of shingle cracking or breaking when subjected to steel (UL 2218 Standard) and ice (FM 4417 Standard) balls
dropped from heights designed to simulate the kinetic energy of terminal velocity hailstone impacts [36,37]. The source of data for
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Fig. 12. Simulated values for Dl, Da, duration, and hit rate. They match with their prediction intervals.

these fragility functions comes from experimental tests previously done by Ref. [38], which involved using ice balls made from tap
water to mimic hailstones [24] The experiments measure the shingles resistance to different ice ball sizes. The results are used to fit
lognormal cumulative distribution functions, quantifying the probability of failure. The fragility function is expressed as

Pf (x) = Φ

⎛⎜⎜⎜⎝
ln

(
x

𝜃

)
𝛾

⎞⎟⎟⎟⎠
, (12)

where Pf(x) denotes the probability of failure of a roof, x is the hailstone diameter, Φ(•) denotes the standard normal cumulative dis-
tribution function, θ and γ are parameters of the distribution, which denotes the median capacity and measures variability in capacity,
respectively. Fig. 13 summarizes the overall risk calculation for this process.

To apply the fragility function, first determine the number and size of hailstones impacting a shingle. Then, using the statistical re-
lationships from Section 2, derive the Da for Gamma parameters, and duration (T) and hit rate (Hr) for the total count of hailstones
(N). Following this, the diameter distribution function FD(d) allows for the estimation of the number of hailstones having certain hail-
stone sizes. The probability of a roof shingle damage in a hailstorm whose maximum hail diameter is given is [24]

Pfail


Dl


= 1 −

Dl
x=5


1 − Φ


ln


x

𝜃


𝛾





Nab

, (13)
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Fig. 13. Flow chart of hail risk calculation.

where x = Î {5, 6, 7, … ,Dl}, a = x − 0.5, and b = x + 0.5. Nab is the number of hailstone observations whose diameters are between a
and b mm on one shingle, calculated as

Nab = N × A × fab, (14)

where N is the total number of hailstone observations per unit area calculated by T and Hr, A is the exposed area of a shingle and is
taken to be 0.165m2, and fab is the probability of having a hailstone whose diameter is between a and b mm, and can be calculated as

fab = FD (b) − FD (a) . (15)

The fragility curves of the roofs provided by Ref. [24] are plotted in Fig. 14, and their parameters θ and β are listed in Table 2. Fig.
14 illustrates that the higher class of the roof is associated with the lower failure probability.

Fig. 14. Fragility curves for each hailstone during a hail event. The black, red, green, light blue, and dark blue curves represent unrated, Class1, Class 2, Class 3, and
Class 4, respectively.

Table 2
Shingle fragility parameter for roof failure by each hailstone during a hail event.

Roof type θ (mm) γ

Unrated 46 0.25
Class 1 81 0.4
Class 2 96 0.4
Class 3 112 0.4
Class 4 129 0.4
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Many studies have explored the damage by hail and ice impact [38–40]. Two methods are employed to fit fragility curves, one tai-
lored for unrated roofs and another for impact-resistant roofs [35]. For detailed information on the methodologies used to fit these
curves, refer to Refs. [24,35]. Here is a concise overview of the fragility curves [24]. implemented experimental specimens [38] using
ice balls to strike shingles, calculating the failure rate of each roof type in relation to the diameter of the ice balls used. For the unrated
roof, the fragility curve is fitted by “bounding diameter” (Method B in Ref. [35]), where it is known that some shingles fail under spe-
cific diameter to which they are subjected. The specimens are categorized into groups based on ranges of diameter, where each bin
has about the same number of specimens. Then, calculating the proportion of specimens that fail within each range and the average
diameter for each bin. These serve as independent data points representing failure probability and the diameter observed. Subse-
quently, these data points are transformed into an inverse cumulative distribution to construct the fragility curve. For impact-
resistant roofs, the fragility curve is determined using the "capable diameter" approach (Method C in Ref. [35]), where the specimen
diameter is known but no specimen fails. Impact-resistant roofs exhibit high durability, which making failure cases rare. In this analy-
sis, the largest diameter in the dataset (denoted by rmax) is assigned a low failure probability (denoted by F). These values are suffi-
cient to establish the cumulative distribution function [24].

The term Pfail(Dl) with

Pfail

(
Dl

)
=

{
Pfail

(
Dl

)
, Pfail

(
Dl

)
< E

1, Pfail

(
Dl

)
≥ E

, (16)

represents the expected proportion of a roof that would need replacement, assuming only the damaged section is repaired. A critical
threshold is set at E = 0.5. If Pfail(Dl) exceeds this value, it will be rounded up to 1, indicating that a replacement of the entire roof is
warranted when the damage exceeds half of the roof's area (Equation (16)).

4. Hail risk results
4.1. Hail risk analysis without uncertainty

Without uncertainty means that the mean values of hail information across each Dl are used for statistical relationship fitting. For
example, the duration in Fig. 8b spread across each Dl, their mean value is computed in the modeling process, as demonstrated in Fig.
8c. The averaged data provide a general indication of trends, serving as a basic framework for estimating hail hazards and risks. In ac-
cordance with the methods outlined in Section 3.2, this study calculates the average proportion of the probability of hail damage on
roofs. By simulating 10,000 hail events that produce Dl = 5 mm or greater, the study calculates the mean probability of hail damage
on roofs, which is summarized in Table 3.

Table 3 presents the risk outcomes from the analysis conducted without considering hail hazard uncertainty, under three dif-
ferent values of α. It is observed that a larger α corresponds to a smaller probability of extensive damage. According to Ref. [32],
the longer delay in sampling data leads to smaller α, implying that a smaller α reflects a larger original hail diameter due to in-
creasing melting time. Figs. 15 and 16 show the distributions of the hail risk output and the cases of whole roof replacement. A
consistent finding across these figures is that a smaller α results in more extensive roof replacements. For comparative analysis of
roof types, this study selects the scenario where α equals to 1.75 for simplicity. An unrated roof typically incurs approximately
5.4 % damage, whereas roofs with impact resistance classifications exhibit considerably less damage, ranging from 2.3 % for the
least resistant class to as low as 0.11 % for the highest resistance class as shown in Table 3. This represents a substantial reduc-
tion in the probability of hail damage, from about 60 % to as much as 98 %, when compared to the unrated roof as a baseline.
Fig. 16 corroborates these results, showing that higher class roofs predominantly suffer minimal whole roof replacement (i.e.,
Pfail(Dl) > 0.5), with over 400 cases in unrated roof while none are observed in Class 4 (for the simulation runs of 10,000).

4.2. Hail risk analysis with uncertainty
Utilizing the methodology specified in Section 3, this section computes the hail roof damage by factoring in the model's variable

prediction uncertainty (Figs. 5, 7, 9, 11 and 12). The analysis conducted total 10,000 hypothetical hailstorms and calculated 10,000
independent probability of hail damage. In individual simulations, the variables were estimated within the predictive range that in-
corporates the inherent uncertainty within the prediction intervals for Dl, Da, T, and Hr statistical relationships.

Table 4 presents the roof damage outcomes from the analysis conducted with considering hail hazard uncertainty, under three
different values of α. It is observed that a larger α corresponds to a smaller probability of extensive damage (same as the previous
results). Figs. 17 and 18 show the distributions of the risk output and the cases of whole roof replacement. A consistent finding
across these figures is that a smaller α results in more extensive roof replacements. For comparative analysis of roof types, this
study selects the scenario where α equals to 1.75 for simplicity. An unrated roof typically incurs approximately 7.6 % damage,

Table 3
Summary of the probability of hail damage on roofs without uncertainty analysis on hail hazard.

Gamma parameter Unrated Class 1 Class 2 Class 3 Class 4

α = 1.5 0.0566 0.0236 0.0093 0.0032 0.0011
α = 1.75 0.0539 0.0228 0.0091 0.0031 0.0011
α = 2.0 0.0535 0.0224 0.0089 0.0030 0.0010
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Fig. 15. The distribution of the probability of hail damage without uncertainty analysis under α = 1.5.

Fig. 16. The distribution of the probability of hail damage without uncertainty analysis under α = 1.75.
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Table 4
Summary of the probability of hail damage on roofs with uncertainty analysis on hail hazard.

Gamma parameter Unrated Class 1 Class 2 Class 3 Class 4

α = 1.5 0.0767 0.0448 0.0264 0.0159 0.0096
α = 1.75 0.0755 0.0441 0.0259 0.0155 0.0094
α = 2.0 0.0741 0.0436 0.0254 0.0150 0.0092

Fig. 17. The distribution of the probability of hail damage without uncertainty analysis under α = 2.0.

whereas roofs with impact resistance classifications exhibit considerably less damage, ranging from 4.4 % for the least resistant
class to as low as 0.94 % for the highest resistance class as shown in Table 4. This represents a substantial reduction in the probabil-
ity of hail damage, from about 40 % to as much as 90 %, when compared to the baseline case of unrated roof (Figs. 19 and 20).

To examine the impact of hail hazard uncertainty, the outcome of α = 1.75 in both Tables 3 and 4 can be compared. For unrated
roof, the probability of hail damage increases from 5.4 % to 7.6 %, marking a 40 % rise. Regarding the impact-resistance roofs, an av-
eraged increment of 460 % of probability of hail damage, with 190 %, 290 %, 500 %, and 850 % for Class1 through 4, respectively.
The significant increase in the probability of hail damage for higher-end roof classes can be attributed to more extreme hailstorms
that are likely to produce larger hailstones are simulated, and they can damage even the resistant roofs. Figs. 18–20 corroborate this
conclusion, showing that the number of cases of whole replacement is higher than the number of cases indicated in Figs. 15–17. The
increase of cases is especially evident for Class 3 and 4, from 4 to 0 to 102 and 64 cases, respectively, when hail hazard uncertainty is
incorporated into the modeling. Fig. 21 shows that incorporating uncertainty into the hail hazard model increases the exceedance
probability, which could indicate a more conservative estimate of risk. In the figure, semi-logarithmic scale is used to show the effect
of the uncertainty in the hail hazard model.

Fig. 22 illustrates the impact of individual variables to check which variable in the hail hazard model exerts the most influence
when uncertainty is accounted for. Four varied models (α = 1.75) consider the uncertainty of only one specific hail hazard variable
at a time during model fitting. For example, the blue line in Fig. 22 represents the scenario where only Dl uncertainty is considered,
while the other variables are assumed to be certain. The black line shows the probability of hail damage for the five roof types (as
discussed in Section 4.1) without uncertainty, and it is close to the uncertainty statistical relationships of Da, T, and Hr. This analysis
suggests that the inclusion of uncertainties in of Da, T, and Hr does not significantly alter the hail damage on roofs. However, the
model that incorporates Dl uncertainty shows a higher probability of hail damage compared to the others, indicating that Dl uncer-
tainty has the most significant impact on roof damage calculations.

Table 5 highlights the number of roof replacement cases across different roof types under varying conditions of uncertainty
within the hail hazard model, indicating substantial differences in the impact of each type of uncertainty on decision-making. No-
tably, the inclusion of Dl uncertainty leads to a significant increase in roof replacements for all classes, underscoring the critical in-

International Journal of Disaster Risk Reduction 113 (2024) 104853 

15 



Y. Li et al.

Fig. 18. The distribution of the probability of hail damage with uncertainty analysis under α = 1.5.

Fig. 19. The distribution of the probability of hail damage with uncertainty analysis under α = 1.75.
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Fig. 20. The distribution of the probability of hail damage with uncertainty analysis under α = 2.0.

Fig. 21. The log-based comparison for exceedance probability of hail damage with and without uncertainty under α = 1.75. The exceedance probability indicates the
likelihood of probability of hail damage exceeding a certain threshold.
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Fig. 22. Comparison of the probability of hail damage under individual hail hazard variable uncertainty models.

Table 5
Whole replacement cases under individual hail hazard variable uncertainty models (out of 10,000 simulation runs).

Unrated Class 1 Class 2 Class 3 Class 4

Without uncertainty 411 99 34 4 0
Dl uncertain 720 317 173 81 46
Da uncertain 381 99 30 6 2
T uncertain 411 127 46 14 2
Hr uncertain 309 109 44 18 5

fluence that Dl exerts in estimating the hail damage. In comparison, although uncertainties in Da, T, and Hr lead to relatively smaller
changes in replacement cases, the number of whole roof replacement cases increases compared with model without uncertainty.
This suggests that while Da, T, and Hr impact is less pronounced than Dl, these factors contribute to some extreme hailstorm that can
deal damage to high classed roofs.

5. Conclusion and discussion
The statistical modeling approach and updated CoCoRaHS data used in this study have provided valuable insights into hail hazard

characterization and hail roof damage. The findings regarding the resistance of rated roofs for hail impact compared to unrated roofs
are valuable from practical viewpoints. As the impact-resistance rating of the roof increases, the study showed improved endurance
and decreased failure probability. This highlights the importance of considering the higher quality of roofs in assessing hail risk and
underscores the potential benefits of investing in higher-rated roofing materials. The uncertainty analysis conducted in this study has
also revealed key factors. Ignoring the uncertainty of hail hazard leads to potential underestimation of the hail risk. The uncertainty
analysis serves as a critical guide for roof selection and highlights the variability and complexity inherent in hail risk assessments. It is
essential for building owners and the roofing industry to consider the hail hazard uncertainty, especially improving the precise of Dl
measurements or predictions to effectively manage hail risks. Additionally, insurance companies might find this analysis useful for
adjusting premiums and coverage options, particularly in regions prone to hail, by acknowledging that uncertainties, especially in Dl,
can significantly influence potential claims.

This study has several limitations that should be acknowledged. Firstly, it is important to note that hail damage is influenced by
factors, such as the number of hailstones per unit area, hailstone size, and the accompanying winds [41]. However, due to limitations
in wind data, this study only considers hailstone size, hailstorm duration, and hit rate, without accounting for the wind effect. Sec-
ondly, this study does not account for differences in hailstone impacts that occur over different geographical areas or varying condi-
tions within a localized region. The dataset encompasses at least two different meteorological environments (CoCoRaHS is from the
U.S. and the roof is from Calgary, Canada). This variation could result in different characteristics within the hail size distribution
across the regions studied. Additionally, the accuracy of the fragility model is limited by the challenge of simulating real hailstone
falls from the clouds. Laboratory conditions may not perfectly replicate the dynamics of natural hailstorms as well as the influence of
wind and other atmospheric factors. Besides, the Gamma shape factor (α) in hailstone diameter distribution is selected arbitrarily
(within a reasonable range). To address these limitations, future research could integrate additional databases with the current model
and consider incorporating new data and technological advancements to enhance our understanding and improve the accuracy of
predicting hail hazards and risks.
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APPENDIX

Fig. A1. Reproduction of hail relationships. (a) Largest diameter size statistical relationship. (b) Average (blue) and smallest (red) diameter statistical relationships. (c)
Duration relationship. (d) Hit rate statistical relationship. Circles are sample averages, lines are best-fit function, and vertical bar are standard errors. These results are
similar to Fig. 1 in Grieser and Hill (2019).

Table A1
Table of the mean hail roof damage.

Roof Porter NHP

Unrated 0.057 0.053
Class 1 0.030 0.028

(continued on next page)
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Table A1 (continued)

Roof Porter NHP

Class 2 0.011 0.011
Class 3 0.0047 0.0041
Class 4 0.0011 0.0009
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