

NY CoCoRaHS Newsletter

January 2026

Contents:

Observer Recognition	2
Observer Profile	3
CoCo Data in Action	4
Recap of 2025	5-6
Outlooks	7
Contact Information	7

Welcome to 2026! As we start a new year, let's reflect on some of your achievements, how CoCoRaHS data is used, and the weather across New York.

As always, feel free to reach out to your [county or regional coordinator](#) or [me](#)!

Thanks for reading!

- Samantha Borisoff, NYS Coordinator

Photo by NY-TM-23

Observer Recognition

We appreciate all of our volunteers! Consistent precipitation reports, even the zeros, are essential to the CoCoRaHS network and those who use its data. As a special thank you to those observers who report nearly every day, we have created the golden, silver, and bronze raindrop awards. This newsletter is highlighting observers who reported 99% (golden raindrop), 95% (silver raindrop), and 90% (bronze raindrop) of all days from January 1 through December 31.

Golden Raindrop

NY-AB-47 NY-ER-158 NY-OG-70 NY-SR-4
NY-AL-11 NY-ER-166 NY-OL-5 NY-SR-65
NY-BM-1 NY-ER-189 NY-OR-4 NY-SR-70
NY-CB-15 NY-ER-219 NY-OR-21 NY-ST-3
NY-CB-16 NY-FK-7 NY-OR-23 NY-ST-41
NY-CB-23 NY-GN-27 NY-OS-1 NY-TG-33
NY-CL-12 NY-GN-28 NY-OS-15 NY-TG-34
NY-CM-21 NY-GR-6 NY-OS-38 NY-TM-23
NY-CQ-22 NY-GR-7 NY-OT-11 NY-TM-56
NY-CQ-42 NY-GR-14 NY-PT-2 NY-TM-83
NY-CQ-9 NY-GR-15 NY-QN-33 NY-UL-29
NY-CR-1 NY-HM-8 NY-QN-39 NY-UL-31
NY-CR-3 NY-HM-10 NY-RC-1 NY-UL-32
NY-CY-5 NY-JF-30 NY-RL-8 NY-UL-34
NY-CY-34 NY-LV-8 NY-RL-13 NY-UL-37
NY-CY-38 NY-LW-3 NY-RN-1 NY-UL-46
NY-DL-25 NY-LW-12 NY-RN-13 NY-WC-18
NY-DL-32 NY-MG-1 NY-RN-20 NY-WC-22
NY-DT-8 NY-MG-5 NY-RN-41 NY-WC-6
NY-DT-12 NY-MR-15 NY-SC-2 NY-WN-6
NY-DT-24 NY-MR-65 NY-SC-27 NY-WR-21
NY-DT-29 NY-MR-89 NY-SF-16 NY-WY-10
NY-DT-32 NY-NG-2 NY-SF-44 NY-WY-11
NY-DT-34 NY-NG-12 NY-SF-73 NY-YT-8
NY-DT-35 NY-NG-30 NY-SF-77 NY-YT-12
NY-DT-49 NY-NS-42 NY-SF-92
NY-ER-56 NY-NS-70 NY-SF-103
NY-ER-59 NY-OD-21 NY-SF-123
NY-ER-63 NY-OD-69 NY-SF-127
NY-ER-75 NY-OD-70 NY-SF-138
NY-ER-102 NY-OG-10 NY-SL-21

Silver Raindrop

NY-AB-23 NY-MR-21
NY-BM-21 NY-MR-23
NY-BM-52 NY-MR-55
NY-BM-56 NY-NG-27
NY-CB-19 NY-NS-34
NY-CB-26 NY-NS-46
NY-CM-30 NY-NS-65
NY-CT-22 NY-NS-66
NY-CT-25 NY-OD-23
NY-CY-8 NY-OD-66
NY-CY-14 NY-OG-79
NY-CY-26 NY-OR-30
NY-CY-37 NY-OS-16
NY-CY-45 NY-OS-45
NY-DL-34 NY-PT-13
NY-DT-52 NY-SC-16
NY-ER-57 NY-SC-17
NY-ER-72 NY-SF-34
NY-ER-98 NY-SF-85
NY-ER-122 NY-SF-145
NY-ER-138 NY-SF-158
NY-ER-194 NY-SF-169
NY-ER-261 NY-SL-6
NY-ER-280 NY-SN-11
NY-ES-5 NY-ST-10 NY-UL-39
NY-GN-13 NY-TG-26 NY-UL-44
NY-HR-24 NY-TG-31 NY-WN-18
NY-JF-47 NY-TM-4
NY-LW-13 NY-TM-5
NY-MD-16 NY-TM-47
NY-MD-22 NY-TM-52

Bronze Raindrop

NY-AB-1 NY-OD-2
NY-AB-10 NY-OD-67
NY-AB-66 NY-OG-46
NY-AB-72 NY-ON-17
NY-AL-2 NY-OT-31
NY-BM-14 NY-RN-15
NY-BM-24 NY-SF-2
NY-CY-2 NY-SF-62
NY-DT-23 NY-SF-84
NY-DT-53 NY-SF-89
NY-ER-39 NY-SN-16
NY-ER-86 NY-SN-18
NY-ER-151 NY-SR-16
NY-ER-245 NY-SR-59
NY-GN-6 NY-SY-11
NY-GR-17 NY-TG-28
NY-GR-19 NY-TM-42
NY-HM-9 NY-TM-60
NY-MG-3 NY-TM-71
NY-MR-50 NY-UL-49
NY-MR-90 NY-WC-34
NY-NG-58 NY-WR-10
NY-NS-74 NY-WR-26

Observer Profile: NY-TM-23

by Samantha Borisoff, NYS Coordinator

Each newsletter, we will introduce you to a CoCoRaHS observer. This time, we are featuring Mark Wysocki.

Can you provide a little information about yourself?

I joined the Cornell University faculty of the College of Agriculture and Life Sciences in 1988 as an instructor and ended as a senior lecturer in 2023 in the Department of Earth and Atmospheric Sciences. I have a Bachelor of Science in Astronomy and Physics from the University of Arizona in 1976 and a Master of Science in Meteorology from Cornell University in 1988. My main duties were in teaching many of the undergraduate courses and a few graduate courses. All my courses emphasized the practical applications of meteorological concepts. Through my 35 years at Cornell, I was recognized with several awards, mainly for teaching (2001 SUNY Chancellor's Award for Excellence in Teaching, 2011 Kendal S. Carpenter Memorial Advising Award, Professor of Merit for 2015, three-time recipient of the Merrill Presidential Scholar Outstanding Educator Award, and the 2017 Edward N. Lorenz Teaching Excellence Award from the American Meteorological Society). Most of my research dealt with air pollution, helping local and regional communities understand the impacts pollutants have on their health, especially respiratory diseases.

Why did you join CoCoRaHS?

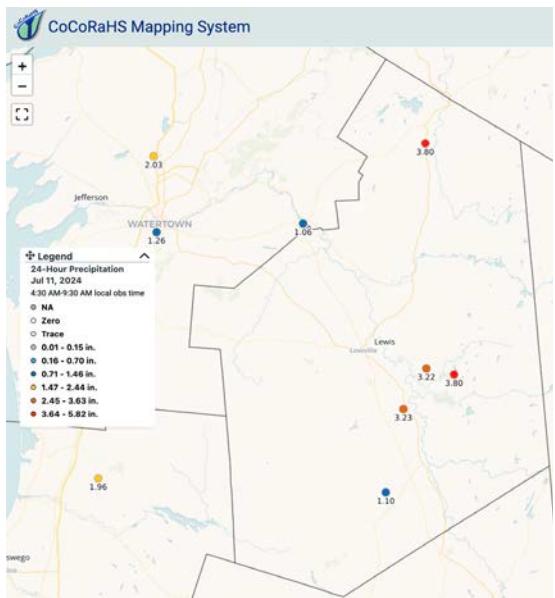
I wanted to contribute to improving our observations of precipitation on the mesoscale and microscale.

Why do you enjoy being an observer?

I feel that I'm providing valuable precipitation information to researchers and forecasters.

What is your favorite weather or most memorable weather event?

That's easy! Fog! A dense fog event in Milwaukee, Wisconsin, back in the late 60's. It was October and my father and I were driving back from a train show. It was somewhat foggy when we went in, but the fog had thickened to near zero when we left. We had trouble finding our white car in the parking lot. When driving, all we could see were shadows of cars and some homes as we drove down the street. It was very scary when we reached an intersection because the traffic lights were hard to see and we didn't know if some driver would "fly" through the intersection. My father decided to take the side roads home and stay off the main roads for safety. It took a while but we made it home.


CoCoRaHS Data in Action

by David Thomas, NWS Buffalo

This section is meant to show you how your observations are used and why they are important. In this issue, National Weather Service Buffalo describes the severe flash flooding event in Lowville in July 2024, including why CoCoRaHS reports are so useful.

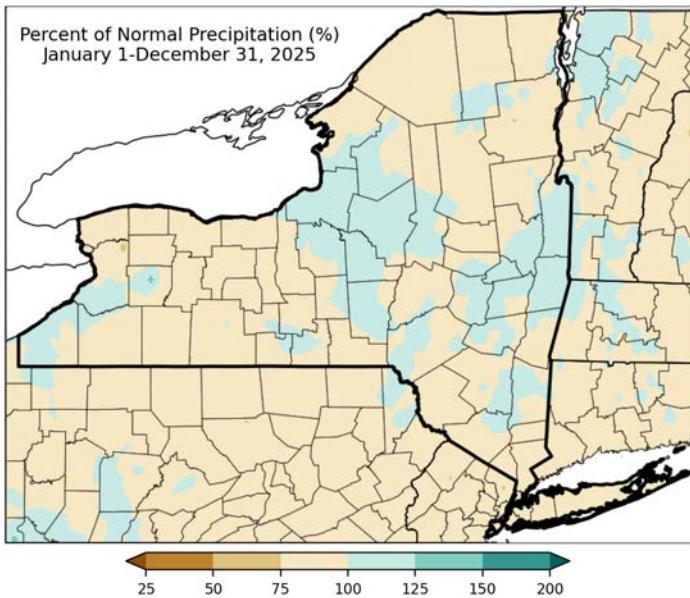
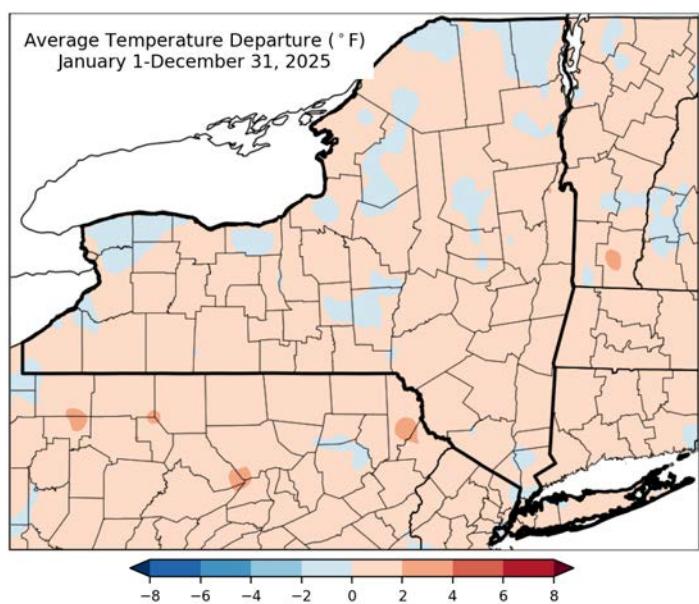
July 10, 2024, will long be remembered as the day with torrential rain and devastating flooding for Lewis County residents, while residents in Western New York will remember this date as the great tornado outbreak.

For Lewis County, ingredients for heavy rainfall came together as a deep plume of moisture along the East Coast was enhanced by tropical moisture from the remnants of Hurricane Beryl, with the intersection of these two airmasses across Central New York. A warm front lifted northward across New York State on the morning of July 10, producing rain showers across the eastern Lake Ontario region. As daytime instability increased, thunderstorms blossomed and these storms became prolific rain makers within the tropical airmass. Each storm produced several inches of rain, and as it became apparent that several thunderstorms would collectively pass across Lowville, the risk for considerable flooding increased.

Several CoCoRaHS observers in Lewis County reported over 3.00 inches of rain, with both Harrisville and Chases Lake reporting 3.80 inches. Not far behind, an observer in Glenfield reported 3.23 inches of rain, while an observer on the other side of Glenfield had 3.22 inches. Within the heart of the event, a Cooperative Observer in Lowville reported 6.02 inches of rain. This amount is the greatest 1-day precipitation within the Lowville station's 133 years of record. Remarkably, Lowville's precipitation report was over an inch greater than the previous record.

All this rain had significant impacts around Lewis County, especially in the more populated area of Lowville. Small creeks and streams became raging rivers in a matter of minutes, washing out roads, flooding campgrounds,

inundating nearby structures, and trapping people in cars and buildings. The Lowville Academy School had to pump a lot of water out of its building, and newly-built athletic fields flooded out. Rushing waters also created landslides in Lewis County. The towns of New Bremen and Watson were left with significant damage as well, with several roads completely washed out and impassable for a lengthy period of time. The Beaver River downstream of the Stillwater Reservoir saw water levels rise to 6.93 feet, which is just a fraction of an inch below the all-time record of 6.98 feet which occurred back in May of 1969.



We thank all the CoCoRaHS observers for their observations through even the difficult times such as severe flash flooding. Knowing the ground truth of how much rain fell helps with planning for future disasters that may hit, not only Lewis County, but anywhere throughout the state of New York.

Recap of 2025

New York State Summary by Samantha Borisoff

New York's annual average temperature for 2025 was 46.3°F. This was 0.3°F warmer than normal. Notably warm months included the 13th-warmest March, 12th-warmest June, and fourth-warmest July. However, the state experienced its coldest December since 2017.

Looking at individual sites within the state, most were (slightly) warmer than normal. For instance, Islip was 1.6°F warmer than normal and had its sixth-warmest year. Meanwhile, JFK Airport was 1.3°F warmer than normal and had its 15th-warmest year.

NY-SF-114, and NY-DT-34—recorded 28 days with no precipitation. Recording zeros, as these observers did, is important for drought monitoring!

The greatest annual precipitation total at a New York CoCoRaHS site was 71.02 inches at NY-OD-2. The five wettest sites are listed below. The greatest daily gauge catch of the year was 4.58 inches at NY-WC-18 on July 15, with NY-RL-13 recording 4.42 inches of precipitation that day. Also notable was the 4.38 inches of precipitation at NY-GR-17 on May 6. During January 2025, several sites including NY-ER-63, NY-FK-7, and NY-HR-24 recorded 26 days with measurable precipitation (at least 0.01 inches). This was among the greatest number of such days for any month in 2025.

Station Number	Station Name	Daily Precip Sum in.	Multi-Day Precip in.	Total Precip in.
NY-OD-2	Point Rock 0.6 SE	57.46	13.56	71.02
NY-GR-20	Elka Park 3.8 ESE	50.20	12.92	63.12
NY-HM-9	Hoffmeister 2.0 E	52.73	2.83	55.56
NY-OS-45	West Monroe 1.6 NNE	50.56	1.53	52.09
NY-OD-67	Holland Patent 0.6 SSE	46.13	5.86	51.99

Recap of 2025

NWS Binghamton: July 3 Severe Weather by Ben Lott

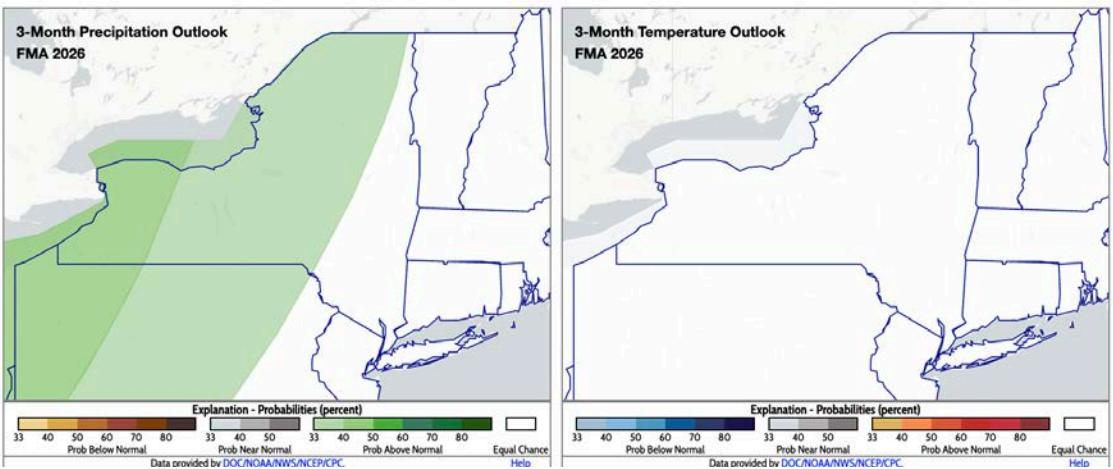
On July 3, daytime heating created a favorable environment for afternoon thunderstorms over Central New York. A line of severe storms that originated in Western New York near Rochester moved across the Finger Lakes Region early in the afternoon. This line then split, with the main portion passing south of Ovid in Seneca County and a smaller cell moving directly over Auburn. Both segments produced strong winds, heavy rain, and hail. The southern part of the line intensified as it proceeded into the southern Finger Lakes Region, leading to multiple reports of wind damage in Schuyler and Tompkins Counties. Additionally, golf ball-sized (1.75-inch diameter) hail was reported just north of Ithaca.

Hail near Greater Binghamton Airport.
Credit: NWS Binghamton

moved through northeastern Pennsylvania.

When hail occurs, wait until the storm passes before collecting hailstones as wind-driven hail can cause serious injury. When reporting hail through the CoCoRaHS website or to your local National Weather Service office, compare its size to common objects like coins, fruits, or sports balls. If using a ruler, measure the hailstone's diameter. While all hail sizes can be reported, severe storms are typically associated with hail at least the size of a quarter (one inch in diameter).

As the storm tracked south into the Southern Tier, it maintained the strong winds and large hail. The New York State Mesonet weather station in Berkshire recorded a gust of 61 mph, consistent with radar estimates. The storm then moved into Broome County and passed directly over the National Weather Service office in Binghamton. Parked vehicles were pelted by wind-driven hail, ranging from quarter-sized to larger than golf balls. Unfortunately, a few staff at the office during the storm walked out to see their windshield shattered or paneling covered in hundreds of small dents. In addition, the large hail stripped treetops of their leaves, making it look like fall had arrived early. The Town of Maine and Port Dickinson saw so much hail that the ground was white in some places. Peak winds, estimated to be 100 mph within microbursts, snapped or uprooted several other trees across Broome County.


This storm continued to cause extensive wind damage as it

Outlooks

by Samantha Borisoff, NYS Coordinator

For February–April, NOAA's Climate Prediction Center favors wetter-than-

normal conditions for western, central, and much of northern New York. Equal chances of below-, near-, or above-normal precipitation were forecast for the rest of the state. Normal precipitation for the period includes 7.94 inches at NY-GN-6 (Genesee County), 8.52 inches at NY-TG-34 (Tioga County), 9.51 inches at NY-OS-15 (Oswego County), 9.85 inches at NY-SL-6 (St. Lawrence County), 10.24 inches at NY-SR-4 (Saratoga County), and 10.49 inches at NY-PT-2 (Putnam County). There are no clear signals for temperatures for February–April in New York. Normal average temperatures for the period include 27.5°F in Lake Placid, 31.5°F in Watertown, 33.8°F in Binghamton, 35.4°F in Buffalo, 36.9°F in Albany, and 44.1°F in New York City.

Contacts:

State Coordinator:

Samantha Borisoff - cocorahs@cornell.edu

Eastern New York (NWS Albany):

Deanna Marks - deanna.marks@noaa.gov

Christina Speciale - christina.speciale@noaa.gov

Central New York (NWS Binghamton):

Jim Brewster - james.brewster@noaa.gov

Western New York (NWS Buffalo):

Dan Kelly - dan.kelly@noaa.gov

David Thomas - david.thomas@noaa.gov

Northern New York (NWS Burlington):

Seth Kutikoff - seth.kutikoff@noaa.gov

Southern New York (NWS New York):

Joe Pollina - joseph.pollina@noaa.gov

Tim Morrin - wmtmorrin@gmail.com

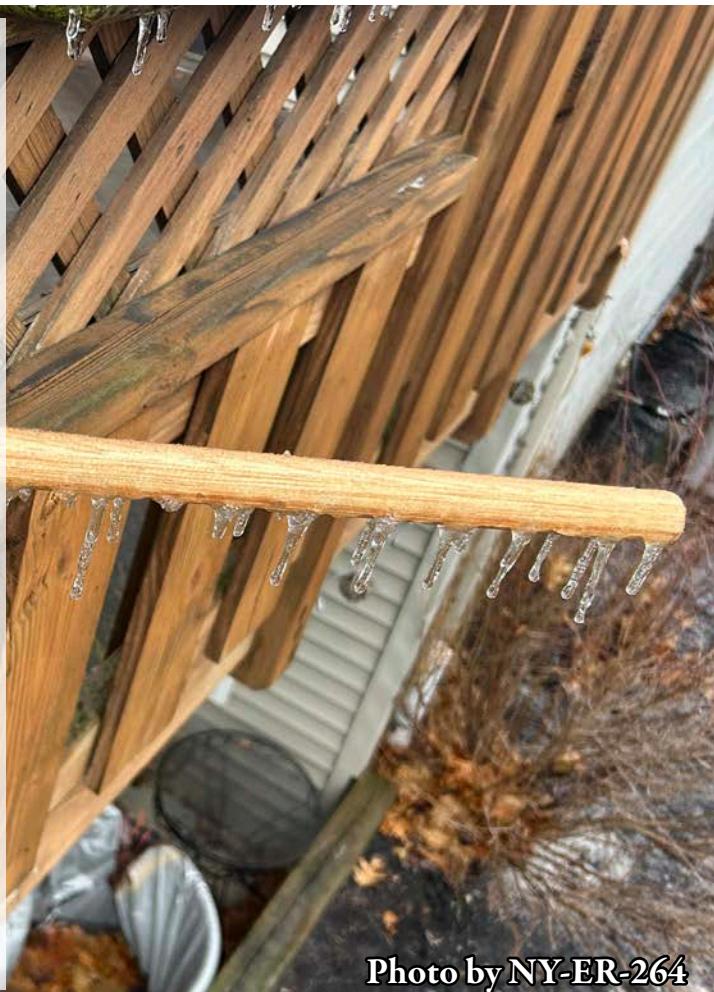


Photo by NY-ER-264